- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Pastor, Ada (2)
-
Aalto, Juha (1)
-
Aartsma, Peter (1)
-
Abdalaze, Otar (1)
-
Abedi, Mehdi (1)
-
Aerts, Rien (1)
-
Ahmadian, Negar (1)
-
Ahrends, Antje (1)
-
Alatalo, Juha M. (1)
-
Alexander, Jake M. (1)
-
Allonsius, Camille Nina (1)
-
Altman, Jan (1)
-
Ammann, Christof (1)
-
Andres, Christian (1)
-
Andrews, Christopher (1)
-
Ardö, Jonas (1)
-
Arriga, Nicola (1)
-
Arzac, Alberto (1)
-
Aschero, Valeria (1)
-
Ashcroft, Michael B. (1)
-
- Filter by Editor
-
-
Fahimipour, Ashkaan K (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fahimipour, Ashkaan K (Ed.)ABSTRACT Dinitrogen (N2) fixation provides bioavailable nitrogen to the biosphere. However, in some habitats (e.g., sediments), the metabolic pathways of organisms carrying out N2fixation are unclear. We present metabolic models representing various chemotrophic N2fixers, which simulate potential pathways of electron transport and energy flow, resulting in predictions of whole-cell stoichiometries. By balancing mass, electrons, and energy for metabolic half-reactions, we quantify the electron usage for nine N2fixers. Our results demonstrate that all modeled organisms fix sufficient N2for growth. Aerobic organisms allocate more electrons to N2fixation and growth, yielding more biomass and fixing more N2, while methanogens using acetate and organisms using sulfate allocate fewer electrons. This work can be applied to investigate the depth distribution of N2fixers based on nutrient availability, complementing field measurements of biogeochemical processes and microbial communities.IMPORTANCEN2fixation is an important process in the global N cycle. Researchers have developed models for heterotrophic and photoautotrophic N2fixers, but there is a lack of modeling studies on chemoautotrophic N2fixers. Here, we built nine biochemical models for different chemoautotrophic N2fixers by combining different types of half-chemical reactions. We include three sulfide oxidizers using different electron acceptors (O2, NO3−, and Fe3+), contributing to the sulfur, nitrogen, and iron cycles in the sediment. We have two methanogens using different substrates (H2and acetate) and four methanotrophs using different electron acceptors (O2, NO3−, Fe3+, and SO42−). By modeling these methane producers and users in the sediment and their N2-fixing metabolic pathways, our work can provide insight for future carbon cycle studies. This study outlines various metabolic pathways that can facilitate N2fixation, with implications for where in the environment they might occur.more » « lessFree, publicly-accessible full text available October 22, 2026
-
Lembrechts, Jonas J.; Hoogen, Johan; Aalto, Juha; Ashcroft, Michael B.; De Frenne, Pieter; Kemppinen, Julia; Kopecký, Martin; Luoto, Miska; Maclean, Ilya M.; Crowther, Thomas W.; et al (, Global Change Biology)
An official website of the United States government
